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The interaction of the shock wave receding from an cbstacle with the line of a tan~
gential discontinuity is investigated for unrated supersonic jets. It is suggested that
one of the causes of strong instability of the wave structure of the jet at certain posi-
tions of the obstacle may be the incompatibility of conditions from different sides of
the tangential discontinuity at the intersection of the latter with the shock wave.

For an unrated-supersonic jet emerging from a nozzle into a submerged space, the wave structure
of the first barrel is frequently characterized by irregular conditions of reflections from the axis. In Fig.
1, a typical Topler photograph of an incompletely expanded jet is shown. In the photograph the incident
shock wave 1 is broken up at the triple point 2 into a central shock wave 3 (Mach disk) and a reflected shock
wave 4. The line of the tangential discontinuity 5 also originates from the triple point which separates the
subsonic stream behind the Mach disk from the supersonic stream behind the reflected shock. In actual jet
streams, the line of the tangential discontinuity, with increasing distance from the triple point, is "washed
out" into a vortex and a turbulent zone of mixing, due to the effect of viscosity. The central subsonic
stream, because of constriction of the transfer space, is gradually dispersed; it becomes sonic at a cer-
tain cross section and beyond this critical section (throat) it is transformed into a supersonic flow. The
gas velocity in sections near the throat, however, remains less than in the peripheral flow zone.

If, in the region of the second barrel of the jet, there is situated an obstacle which is comparable
in transverse dimensions with the nozzle diameter, and if the obstacle is moving toward the nozzle, then
the shock leaving the obstacle approaches the critical section of the central subsonic stream and interacts
with the zone of mixing (the outgoing shock is denoted by 6 in Fig. 1). Experiments show that when the out-
going shock enters the section of the jet near to the throat of the central stream the stability of the wave
structure is destroyed.

This paper investigates one of the most probable causes of wave structure instability, the impos-
sibility of a stationary interaction between the shock leaving the obstacle and the tangential discontinuity.

We shall neglect the thickness of the zone of mixing in the scheme of the ideal gas and we shall con-
sider the immediate vicinity of the point of intersection of the shock wave with the tangential discontinuity.
Therefore, in each individual region between the lines of the discontinuity and the shock front we shall
agsume a rectilinear stream of gas with constant parameters. The flow is shown diagrammatically in Fig.
2. The region below the tangential discontinuity (dashed line) corresponds to the central flow of the jet
beyond the throat. We shall assume, therefore, the fundamental condition1 < M; < M,. We shall further
assume that the obstacle, which is symmetrically disposed in the jet, cannct generate an outgoing shock
wave with a front concave in the near-axial region in the direction of the approaching flow. Following the
classification of [2], this leads to the conclusion that the shock front' OA (Fig. 2) cannot be emergent from
the point O (the shock wave emergent from a point is so designated that behind it the tangential component
of the velocity is directed away from the given point). The shockwaveitself OB canonly be emergent, since inthe
contrary case it would emerge from points lying above with respect to the flow 2 from the pointQ, Moreover, above
the tangential discontinuity only one shock wave can originate from point O, The formation of a further emergent
shock wave or of a rarefaction wave is impossible, because the normal velocity component behind the oblique
shockwave OB is less than sonic velocity.
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At the line of the tangential discontinuity, there
must be satisfaction of the conditions of equality of
pressures and parallelism of flows of the line of the
discontinuity, both before and after the shock wave:

P1=P2, P3:P4’ 33:‘34’ (1

where 85 and 8, are the angles of turn of the velocity
behind the shock waves OA and OB (8 = 85 = 0). The
basic relations for the flow parameters during pas-
sage through the shock wave OA or OB are the follow-
ing:
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Fig.1. Photograph of an unrated jet flowing over
an obstacle, Misintg, —1
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where i =1 for the shock wave OA and i = 2 for the shock wave OB. Taking account of Eq. (1), it follows
from Eqg. (2) that
M, sino, =M,sino,. (4

Consequently, when M, > M,, we have o, < 0y. Inaddition, when M; — 1 it must necessarily be
that ¢; — 90° and thereby sino, =1/M,, i.e., the shock wave OB is generated at the Mach line, which is
natural.

If we introduce the parameter for the shock intensity &; =1 — Pj/ Py 1o, then by eliminating the angles
o from the system of equations (2) and (3), we can find the equations for the shock polar curves:

E, 2MI(1—E)
EM;—& (LMY 2 —(—1) g,

L 5

tan By 1=

where k = C_/ Cy. Assuming that 8, = 8, and &, = £, = £, and equating the right-hand side of the equations
for the shoclg polar curves (5), we arrive at the following equation: ’

AE® - BE*4- CE + D=0, (6)
where

A=M; [24 (—1) M| —M3 [2+4 (& —1) M3] +2&MIM3 (M5 —M1),
B=—2 (M} [3-(2—1) M| — M} [3-+(2k—1) M3] 4 3eMIME (M3 —M3)},

C=Mi [4-+(5k—1) M}] —Mj [44(5k—1) M3] +6£MIMS (M5 —M3),
D=2k (M} — M3) (MIM3 — M3 — M3).
The roots of the cubic equation (6) were found on a computer for the following range of My and M,

numbers: M =1-6 and M, = 1-20. In Fig. 3 the solid curves denote the values of the realroots of Eq. (6)
as a function of the Mach number M, when the parameter M; = const.

It can be seen from the graph that when M, < V2, generally there are no real roots of Eq. (6). Physi-
cally, this signifies that when M, < v 2 the conditions at the tangential discontinuity behind the shock are
not satisfied for any Mach numbers M.

Alj the curves of M; = const for My < v 2 terminate on theabscissa i.‘e., at the value £ = 0. This
value corresponds to the case of shock generation of the Mach line. A zero value of ¢ can be obtained from
Eq. (6) only for a zero value of the coefficient D. The latteris possible when two conditions are satisfied:

M,=M, or MiMj—M]—M; = 0.

In our case, only the second condition is of interest; from this it follows that:

M= )
VM§—1



Fig. 2. Flow diagram for the interaction of a shock
wave with the line of a tangential discontinuity [1, 2)
regions ahead of the shock wave, below and above the
line of the tangential discontinuity, respectively; 3, 4)
regions behind the shock front below and above the line

of the tangential discontinuity].
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Fig. 3. The dependence ¢ =1(M,) for various values of
M; during the interaction of the shock front with the

tangential discontinuity.
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Fig. 4. Region of values of M; and M, in which
stationary interaction is possible,

Relation (7) determines, for values of M, < V2, the
magnitude of the Mach number M; for which the shock
wave interacting with the line of the tangential dis-
continuityis generated at the Mach line (¢ = 0).

In order to show the joint values of the Mach
numbers M; and M, corresponding to the conditions
at the tangential discontinuity for which a stable pat-~
tern is possible for the interaction between the dis-
continnity and the shock wave, reference should be
made to Fig. 4. Here, the line AB corresponds to the
limiting dashed line of Fig. 3 (M; = M,). The line AC
is given by relation (7), i.e., it corresponds to values
¢ = 0. In this case, the region to the right of the line
BAC defines the mutual values of M; and M, for which
a stable stationary interaction between the tangential
discontinuity and the shock wave is possible.

For jet streams, when the shock wave emerging from the obstacle interacts with the line of the tan-
gential discontinuity, the region of stable stationary interaction is shortened even more. Actually, as
there must be a subsonic flow between the shock front emerging from the obstacle and the obstacle itself,
then for the case of flow round the obstacle of unrated jets, only values of M; < 1 are of interest. In Fig. 4,
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the curve DEF corresponds to the points M; and M, which give M, = 1. Therefore, for cases when the in-
teraction of an emergent shock wave with the line of a tangential discontinuity is considered, a region of
stationary interaction is found on the plane M; — M, to the right of the line DEF. The point E gives the
‘minimum value of M, (M, = 2.08) for which a stable interaction pattern is possible.

For an oriented representation of the actual values of the My and M, numbers occurring in a jet at
the line of the tangential discontinuity, we use the ideal picture of the behavior of a gas on the flow lines
adjacent to the tangential discontinuity,

We shall use the laws of isentropic motion for the gas on the flow lines. Then,

% (My)= ﬁ a (My), (8

20
k
where m(M) = (1+ Ii%l Mz) = Pigand Py, are the total pressure below and above the tangential dis-

continuity in the jet immediately after the triple point of the Mach configuration,

The calculations were carried out for a jet with Mach number in a slice of a conical nozzle M, = 2
and with an aperture half-angle of 4, = 15° for two unratables n = P,/ Py = 1.98 and n = 4,08, The function
M, =£f(M;) on the line of the tangential discontinuity is determined in accordance with Eq. (8). The functions
M, = £(M;) for the cases stated are plotted in Fig. 4 by the dashed lines. It can be seen from the graphs that
for the first case, up to the value of My =1.34, and for the second case up to My = 1.24, the curves run out-
side the zone of stationary interaction between the tangential discontinuity and the shock wave outgoing from
the obstacle,

Consequently, arising from the configuration of the region of stable interaction (Fig. 4), it may be
concluded that, for an incompletely expanded supersonic jet flowing over the obstacle, a stationary posi-
tion for the shock wave outgoing from the obstacle is not possible if the shock wave reaches a zone of the
jet located immediately behind the throat of the approaching axial flow from the Mach disk.

NOTATION

M is the Mach number of the gas stream;

P is the gas pressure;

B is the angle of turn of the gas stream at the shock front;

o is the angle of inclination of the shock wave to the approaching stream;
k = Cp/ Cy is the ratio of the specific heats of the gas.
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